Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Rev Genet ; 25(4): 286-302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38093095

RESUMEN

Modern health care faces several serious challenges, including an ageing population and its inherent burden of chronic diseases, rising costs and marginal quality metrics. By assessing and optimizing the health trajectory of each individual using a data-driven personalized approach that reflects their genetics, behaviour and environment, we can start to address these challenges. This assessment includes longitudinal phenome measures, such as the blood proteome and metabolome, gut microbiome composition and function, and lifestyle and behaviour through wearables and questionnaires. Here, we review ongoing large-scale genomics and longitudinal phenomics efforts and the powerful insights they provide into wellness. We describe our vision for the transformation of the current health care from disease-oriented to data-driven, wellness-oriented and personalized population health.


Asunto(s)
Genómica , Fenómica
2.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36625177

RESUMEN

Recent advances in long-read sequencing technology have allowed for single-molecule sequencing of entire mitochondrial genomes, opening the door for direct investigation of the mitochondrial genome architecture and recombination. We used PacBio sequencing to reassemble mitochondrial genomes from two species of New Zealand freshwater snails, Potamopyrgus antipodarum and Potamopyrgus estuarinus. These assemblies revealed a ∼1.7 kb structure within the mitochondrial genomes of both species that was previously undetected by an assembly of short reads and likely corresponding to a large noncoding region commonly present in the mitochondrial genomes. The overall architecture of these Potamopyrgus mitochondrial genomes is reminiscent of the chloroplast genomes of land plants, harboring a large single-copy (LSC) region and a small single-copy (SSC) region separated by a pair of inverted repeats (IRa and IRb). Individual sequencing reads that spanned across the Potamopyrgus IRa-SSC-IRb structure revealed the occurrence of a "flip-flop" recombination. We also detected evidence for two distinct IR haplotypes and recombination between them in wild-caught P. estuarinus, as well as extensive intermolecular recombination between single-nucleotide polymorphisms in the LSC region. The chloroplast-like architecture and repeat-mediated mitochondrial recombination we describe here raise fundamental questions regarding the origins and commonness of inverted repeats in cytoplasmic genomes and their role in mitochondrial genome evolution.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Animales , Análisis de Secuencia de ADN , Recombinación Genética , Cloroplastos , Filogenia
3.
Sci Rep ; 12(1): 5479, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361853

RESUMEN

Vertebrate mitochondrial genomes have been extensively studied for genetic and evolutionary purposes, these are normally believed to be extremely conserved, however, different cases of gene rearrangements have been reported. To verify the level of rearrangement and the mitogenome evolution, we performed a comparative genomic analysis of the 2831 vertebrate mitochondrial genomes representing 12 classes available in the NCBI database. Using a combination of bioinformatics methods, we determined there is a high number of errors in the annotation of mitochondrial genes, especially in tRNAs. We determined there is a large variation in the proportion of rearrangements per gene and per taxonomic class, with higher values observed in Actinopteri, Amphibia and Reptilia. We highlight that these are results for currently available vertebrate sequences, so an increase in sequence representativeness in some groups may alter the rearrangement rates, so in a few years it would be interesting to see if these rates are maintained or altered with the new mitogenome sequences. In addition, within each vertebrate class, different patterns in rearrangement proportion with distinct hotspots in the mitochondrial genome were found. We also determined that there are eleven convergence events in gene rearrangement, nine of which are new reports to the scientific community.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Animales , Reordenamiento Génico/genética , Genoma Mitocondrial/genética , Genómica , Reptiles/genética
4.
Mol Biol Evol ; 38(9): 3581-3592, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33885820

RESUMEN

How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits-mode of genomic inheritance-influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S-5.8S-28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA-histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction-with potential functional consequences related to the loss of sexual reproduction.


Asunto(s)
Genoma , Histonas , Animales , Genómica , Histonas/genética , Humanos , Reproducción Asexuada/genética , Caracoles/genética
5.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200159, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33813887

RESUMEN

The first animal mitochondrial genomes to be sequenced were of several vertebrates and model organisms, and the consistency of genomic features found has led to a 'textbook description'. However, a more broad phylogenetic sampling of complete animal mitochondrial genomes has found many cases where these features do not exist, and the phylum Mollusca is especially replete with these exceptions. The characterization of full mollusc mitogenomes required considerable effort involving challenging molecular biology, but has created an enormous catalogue of surprising deviations from that textbook description, including wide variation in size, radical genome rearrangements, gene duplications and losses, the introduction of novel genes, and a complex system of inheritance dubbed 'doubly uniparental inheritance'. Here, we review the extraordinary variation in architecture, molecular functioning and intergenerational transmission of molluscan mitochondrial genomes. Such features represent a great potential for the discovery of biological history, processes and functions that are novel for animal mitochondrial genomes. This provides a model system for studying the evolution and the manifold roles that mitochondria play in organismal physiology, and many ways that the study of mitochondrial genomes are useful for phylogeny and population biology. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Asunto(s)
Duplicación de Gen , Reordenamiento Génico , Genoma Mitocondrial , Moluscos/genética , Animales , Herencia
6.
BMC Genomics ; 20(1): 73, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30669991

RESUMEN

BACKGROUND: Although animal mitochondrial DNA sequences are known to evolve rapidly, their gene arrangements often remain unchanged over long periods of evolutionary time. Therefore, comparisons of mitochondrial genomes may result in significant insights into the evolution both of organisms and of genomes. Mammalian mitochondrial genomes recently published in the GenBank database of NCBI show numerous rearrangements in various regions of the genome, from which it may be inferred that the mammalian mitochondrial genome is more dynamic than expected. However, it is alternatively possible that these are errors of annotation and, if so, are misleading our interpretations. In order to verify these possible errors of annotation, we performed a comparative genomic analysis of mammalian mitochondrial genomes available in the NCBI database. RESULTS: Using a combination of bioinformatics methods to carefully examine the mitochondrial gene arrangements in 304 mammalian species, we determined that there are only two sets of gene arrangements, one that is shared by all of the marsupials and another that is shared by all of the monotremes and eutherians, with these two arrangements differing only by the positions of tRNA genes in the region commonly designated as "WANCY" for the genes it comprises. All of the 68 other cases of reported gene rearrangements are errors. We note that there are also numerous errors of impossibly short, incorrect gene annotations, cases where genomes that are reported as complete are actually missing portions of the sequence, and genes that are clearly present but were not annotated in these records. CONCLUSIONS: We judge that the application of simple bioinformatic tools in the verification of gene annotation, particularly for organelle genomes, would be a very useful enhancement for the curation of genome sequences submitted to GenBank.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma Mitocondrial , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Animales , Humanos , Alineación de Secuencia
8.
Evolution ; 72(4): 808-824, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29520921

RESUMEN

Harmful mutations are ubiquitous and inevitable, and the rate at which these mutations are removed from populations is a critical determinant of evolutionary fate. Closely related sexual and asexual taxa provide a particularly powerful setting to study deleterious mutation elimination because sexual reproduction should facilitate mutational clearance by reducing selective interference between sites and by allowing the production of offspring with different mutational complements than their parents. Here, we compared the rate of removal of conservative (i.e., similar biochemical properties) and radical (i.e., distinct biochemical properties) nonsynonymous mutations from mitochondrial genomes of sexual versus asexual Potamopyrgus antipodarum, a New Zealand freshwater snail characterized by coexisting and ecologically similar sexual and asexual lineages. Our analyses revealed that radical nonsynonymous mutations are cleared at higher rates than conservative changes and that sexual lineages eliminate radical changes more rapidly than asexual counterparts. These results are consistent with reduced efficacy of purifying selection in asexual lineages allowing harmful mutations to remain polymorphic longer than in sexual lineages. Together, these data illuminate some of the population-level processes contributing to mitochondrial mutation accumulation and suggest that mutation accumulation could influence the outcome of competition between sexual and asexual lineages.


Asunto(s)
Sustitución de Aminoácidos , Aminoácidos/genética , Mutación , Reproducción Asexuada , Caracoles/fisiología , Animales , Evolución Molecular , Genoma Mitocondrial , Nueva Zelanda , Caracoles/genética
9.
Mol Ecol ; 26(14): 3663-3675, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28429458

RESUMEN

Reciprocal co-evolving interactions between hosts and parasites are a primary source of strong selection that can promote rapid and often population- or genotype-specific evolutionary change. These host-parasite interactions are also a major source of disease. Despite their importance, very little is known about the genomic basis of co-evolving host-parasite interactions in natural populations, especially in animals. Here, we use gene expression and sequence evolution approaches to take critical steps towards characterizing the genomic basis of interactions between the freshwater snail Potamopyrgus antipodarum and its co-evolving sterilizing trematode parasite, Microphallus sp., a textbook example of natural coevolution. We found that Microphallus-infected P. antipodarum exhibit systematic downregulation of genes relative to uninfected P. antipodarum. The specific genes involved in parasite response differ markedly across lakes, consistent with a scenario where population-level co-evolution is leading to population-specific host-parasite interactions and evolutionary trajectories. We also used an FST -based approach to identify a set of loci that represent promising candidates for targets of parasite-mediated selection across lakes as well as within each lake population. These results constitute the first genomic evidence for population-specific responses to co-evolving infection in the P. antipodarum-Microphallus interaction and provide new insights into the genomic basis of co-evolutionary interactions in nature.


Asunto(s)
Coevolución Biológica , Genética de Población , Interacciones Huésped-Parásitos/genética , Caracoles/genética , Caracoles/parasitología , Trematodos/patogenicidad , Animales , Nueva Zelanda
10.
BMC Genomics ; 15: 383, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24884426

RESUMEN

BACKGROUND: Mosses are the largest of the three extant clades of gametophyte-dominant land plants and remain poorly studied using comparative genomic methods. Major monophyletic moss lineages are characterised by different types of a spore dehiscence apparatus called the peristome, and the most important unsolved problem in higher-level moss systematics is the branching order of these peristomate clades. Organellar genome sequencing offers the potential to resolve this issue through the provision of both genomic structural characters and a greatly increased quantity of nucleotide substitution characters, as well as to elucidate organellar evolution in mosses. We publish and describe the chloroplast and mitochondrial genomes of Tetraphis pellucida, representative of the most phylogenetically intractable and morphologically isolated peristomate lineage. RESULTS: Assembly of reads from Illumina SBS and Pacific Biosciences RS sequencing reveals that the Tetraphis chloroplast genome comprises 127,489 bp and the mitochondrial genome 107,730 bp. Although genomic structures are similar to those of the small number of other known moss organellar genomes, the chloroplast lacks the petN gene (in common with Tortula ruralis) and the mitochondrion has only a non-functional pseudogenised remnant of nad7 (uniquely amongst known moss chondromes). CONCLUSIONS: Structural genomic features exist with the potential to be informative for phylogenetic relationships amongst the peristomate moss lineages, and thus organellar genome sequences are urgently required for exemplars from other clades. The unique genomic and morphological features of Tetraphis confirm its importance for resolving one of the major questions in land plant phylogeny and for understanding the evolution of the peristome, a likely key innovation underlying the diversity of mosses. The functional loss of nad7 from the chondrome is now shown to have occurred independently in all three bryophyte clades as well as in the early-diverging tracheophyte Huperzia squarrosa.


Asunto(s)
Briófitas/genética , Genoma de Planta , Secuencia de Bases , Briófitas/clasificación , Mapeo Cromosómico , Genoma del Cloroplasto , Genoma Mitocondrial , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ARN
11.
Science ; 342(6165): 1468-73, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24357311

RESUMEN

We report the complete mitochondrial genome sequence of the flowering plant Amborella trichopoda. This enormous, 3.9-megabase genome contains six genome equivalents of foreign mitochondrial DNA, acquired from green algae, mosses, and other angiosperms. Many of these horizontal transfers were large, including acquisition of entire mitochondrial genomes from three green algae and one moss. We propose a fusion-compatibility model to explain these findings, with Amborella capturing whole mitochondria from diverse eukaryotes, followed by mitochondrial fusion (limited mechanistically to green plant mitochondria) and then genome recombination. Amborella's epiphyte load, propensity to produce suckers from wounds, and low rate of mitochondrial DNA loss probably all contribute to the high level of foreign DNA in its mitochondrial genome.


Asunto(s)
ADN Mitocondrial/genética , Transferencia de Gen Horizontal , Genoma de Planta , Dinámicas Mitocondriales , Tracheophyta/genética , Secuencia de Bases , Briófitas/clasificación , Briófitas/genética , Chlorophyta/clasificación , Chlorophyta/genética , Fusión de Membrana , Datos de Secuencia Molecular , Filogenia , Tracheophyta/clasificación
12.
Nature ; 493(7433): 526-31, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23254933

RESUMEN

Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.


Asunto(s)
Tipificación del Cuerpo/genética , Evolución Molecular , Genoma/genética , Sanguijuelas/genética , Moluscos/genética , Filogenia , Poliquetos/genética , Animales , Secuencia Conservada/genética , Genes Homeobox/genética , Ligamiento Genético , Especiación Genética , Humanos , Mutación INDEL/genética , Intrones/genética , Sanguijuelas/anatomía & histología , Moluscos/anatomía & histología , Familia de Multigenes/genética , Poliquetos/anatomía & histología , Sintenía/genética
13.
Nat Commun ; 3: 686, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22353717

RESUMEN

The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga.


Asunto(s)
Genoma , Estramenopilos/genética , Transformación Genética , Secuencia de Bases , Mapeo Cromosómico , Lípidos/biosíntesis , Microalgas/genética , Datos de Secuencia Molecular , Fotosíntesis/genética , Filogenia , Análisis de Secuencia de ADN , Estramenopilos/metabolismo
14.
Genome Res ; 22(3): 498-507, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22128133

RESUMEN

We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis-brain expressed genes on the X.


Asunto(s)
Evolución Molecular , Genes sry , Macropodidae/genética , Cromosoma Y , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Expresión Génica , Biblioteca de Genes , Masculino , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
15.
Cell ; 147(5): 1171-85, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118469

RESUMEN

We present the draft 273 Mb genome of the migratory monarch butterfly (Danaus plexippus) and a set of 16,866 protein-coding genes. Orthology properties suggest that the Lepidoptera are the fastest evolving insect order yet examined. Compared to the silkmoth Bombyx mori, the monarch genome shares prominent similarity in orthology content, microsynteny, and protein family sizes. The monarch genome reveals a vertebrate-like opsin whose existence in insects is widespread; a full repertoire of molecular components for the monarch circadian clockwork; all members of the juvenile hormone biosynthetic pathway whose regulation shows unexpected sexual dimorphism; additional molecular signatures of oriented flight behavior; microRNAs that are differentially expressed between summer and migratory butterflies; monarch-specific expansions of chemoreceptors potentially important for long-distance migration; and a variant of the sodium/potassium pump that underlies a valuable chemical defense mechanism. The monarch genome enhances our ability to better understand the genetic and molecular basis of long-distance migration.


Asunto(s)
Migración Animal , Mariposas Diurnas/genética , Genoma de los Insectos , Anotación de Secuencia Molecular , Secuencia de Aminoácidos , Animales , Evolución Biológica , Mariposas Diurnas/fisiología , Femenino , Vuelo Animal , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Masculino , Datos de Secuencia Molecular , Mariposas Nocturnas/genética , Neuropéptidos/química , Neuropéptidos/genética , Filogenia , Alineación de Secuencia , Olfato
16.
BMC Evol Biol ; 11: 120, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21554730

RESUMEN

BACKGROUND: Divergence within cis-regulatory sequences may contribute to the adaptive evolution of gene expression, but functional alleles in these regions are difficult to identify without abundant genomic resources. Among African cichlid fishes, the differential expression of seven opsin genes has produced adaptive differences in visual sensitivity. Quantitative genetic analysis suggests that cis-regulatory alleles near the SWS2-LWS opsins may contribute to this variation. Here, we sequence BACs containing the opsin genes of two cichlids, Oreochromis niloticus and Metriaclima zebra. We use phylogenetic footprinting and shadowing to examine divergence in conserved non-coding elements, promoter sequences, and 3'-UTRs surrounding each opsin in search of candidate cis-regulatory sequences that influence cichlid opsin expression. RESULTS: We identified 20 conserved non-coding elements surrounding the opsins of cichlids and other teleosts, including one known enhancer and a retinal microRNA. Most conserved elements contained computationally-predicted binding sites that correspond to transcription factors that function in vertebrate opsin expression; O. niloticus and M. zebra were significantly divergent in two of these. Similarly, we found a large number of relevant transcription factor binding sites within each opsin's proximal promoter, and identified five opsins that were considerably divergent in both expression and the number of transcription factor binding sites shared between O. niloticus and M. zebra. We also found several microRNA target sites within the 3'-UTR of each opsin, including two 3'-UTRs that differ significantly between O. niloticus and M. zebra. Finally, we examined interspecific divergence among 18 phenotypically diverse cichlids from Lake Malawi for one conserved non-coding element, two 3'-UTRs, and five opsin proximal promoters. We found that all regions were highly conserved with some evidence of CRX transcription factor binding site turnover. We also found three SNPs within two opsin promoters and one non-coding element that had weak association with cichlid opsin expression. CONCLUSIONS: This study is the first to systematically search the opsins of cichlids for putative cis-regulatory sequences. Although many putative regulatory regions are highly conserved across a large number of phenotypically diverse cichlids, we found at least nine divergent sequences that could contribute to opsin expression differences in cis and stand out as candidates for future functional analyses.


Asunto(s)
Cíclidos/genética , Proteínas de Peces/genética , Opsinas/genética , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Alineación de Secuencia , Regiones no Traducidas
17.
Mar Genomics ; 4(1): 51-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21429465

RESUMEN

Sea slugs (Gastropoda: Opisthobranchia) are characterized by extensive morphological homoplasy. In particular, reduced or absent shells are predominant throughout the group. This trend towards shell loss has resulted in a poor fossil record. DNA-based phylogenies have been helpful in improving our understanding of the evolution of this group and major clades are emerging. We report 13 new complete opisthobranch mitochondrial genomes that provide robust support for some of these emerging nodes. We name three new clades within the Opisthobranchia, the Actopleura (Acteonoidea plus Nudipleura), Placoesophaga (Cephalaspidea plus Anaspidea), and Siphoglossa (Sacoglossa plus the Siphonaria). Finally we use molecular clock dating that suggests an earlier opisthobranch divergence than previously reported. The implications of this evolutionary scenario are discussed.


Asunto(s)
Evolución Biológica , Gastrópodos/genética , Genoma Mitocondrial/genética , Genómica/métodos , Animales , Gastrópodos/anatomía & histología , Orden Génico
18.
Mol Biol Evol ; 28(1): 583-600, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20805190

RESUMEN

Geraniaceae plastid genomes (plastomes) have experienced a remarkable number of genomic changes. The plastomes of Erodium texanum, Geranium palmatum, and Monsonia speciosa were sequenced and compared with other rosids and the previously published Pelargonium hortorum plastome. Geraniaceae plastomes were found to be highly variable in size, gene content and order, repetitive DNA, and codon usage. Several unique plastome rearrangements include the disruption of two highly conserved operons (S10 and rps2-atpA), and the inverted repeat (IR) region in M. speciosa does not contain all genes in the ribosomal RNA operon. The sequence of M. speciosa is unusually small (128,787 bp); among angiosperm plastomes sequenced to date, only those of nonphotosynthetic species and those that have lost one IR copy are smaller. In contrast, the plastome of P. hortorum is the largest, at 217,942 bp. These genomes have experienced numerous gene and intron losses and partial and complete gene duplications. Some of the losses are shared throughout the family (e.g., trnT-GGU and the introns of rps16 and rpl16); however, other losses are homoplasious (e.g., trnG-UCC intron in G. palmatum and M. speciosa). IR length is also highly variable. The IR in P. hortorum was previously shown to be greatly expanded to 76 kb, and the IR is lost in E. texanum and reduced in G. palmatum (11 kb) and M. speciosa (7 kb). Geraniaceae plastomes contain a high frequency of large repeats (>100 bp) relative to other rosids. Within each plastome, repeats are often located at rearrangement end points and many repeats shared among the four Geraniaceae flank rearrangement end points. GC content is elevated in the genomes and also in coding regions relative to other rosids. Codon usage per amino acid and GC content at third position sites are significantly different for Geraniaceae protein-coding sequences relative to other rosids. Our findings suggest that relaxed selection and/or mutational biases lead to increased GC content, and this in turn altered codon usage. We propose that increases in genomic rearrangements, repetitive DNA, nucleotide substitutions, and GC content may be caused by relaxed selection resulting from improper DNA repair.


Asunto(s)
Codón , Reordenamiento Génico , Genoma de Plastidios , Geraniaceae/genética , Animales , Composición de Base/genética , Secuencia de Bases , ADN de Plantas/genética , Evolución Molecular , Geraniaceae/clasificación , Geraniaceae/citología , Datos de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
19.
Science ; 330(6010): 1549-1551, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21148394

RESUMEN

Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.


Asunto(s)
Arabidopsis/parasitología , Evolución Molecular , Genoma , Oomicetos/crecimiento & desarrollo , Oomicetos/genética , Enfermedades de las Plantas/parasitología , Adaptación Fisiológica , Secuencia de Aminoácidos , Enzimas/genética , Dosificación de Gen , Genes , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Oomicetos/patogenicidad , Oomicetos/fisiología , Phytophthora/genética , Polimorfismo de Nucleótido Simple , Proteínas/genética , Selección Genética , Análisis de Secuencia de ADN , Esporas/fisiología , Sintenía , Factores de Virulencia/genética
20.
BMC Evol Biol ; 10: 321, 2010 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-20969798

RESUMEN

BACKGROUND: Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. RESULTS: We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants), lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense), and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels). We found one new indel and an inversion of a block of genes that unites the monilophytes. CONCLUSIONS: Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns," including Marattiaceae.


Asunto(s)
Equisetum/clasificación , Equisetum/genética , Evolución Molecular , Lycopodiaceae/clasificación , Lycopodiaceae/genética , Filogenia , Plastidios/genética , ADN de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...